
Abstract. A density functional theory based on a com-
plete active space self consistent field (CASSCF) refer-
ence function with exact exchange is discussed. It is first
shown that such a theory may be formulated with a
correlation potential dependent on the density function
and on the active space used. Auxiliary functions, such
as the on-top two-particle density, are used to define
uniquely the potential for different active spaces. The
paper also analyses the correlation functional for some
atomic and molecular cases. Large ab initio calculations
are performed to obtain accurate density functions. A
correlation potential is then fitted such that the reference
CASSCF function gives the same density. The correla-
tion potential values are saved in a data base for future
analysis.
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1 Introduction

The formulation of density functional theory (DFT) [1,
2] and its implementation into efficient procedures for
calculations on molecular systems has during the last 10
years changed the world of quantum chemistry. Systems
of a size and complexity that was earlier out of range for
accurate quantum chemical studies are now routinely
studied using standard quantum chemistry program
systems. As a result, theoretical predictions can today be
made in many areas of chemistry. Particularly notewor-
thy are the large number of applications to biochemical
systems that have become possible.

However, DFT has its limitations. It is less accurate
in situations where the wave function is not well
described as a single determinant. The original formu-

lation of DFT is restricted to non degenerate ground
states. Studies of excited states can only be made using
linear response theory, which limits the applications in
photochemistry. DFT is in principle an exact theory, but
its formulation using a local exchange–correlation po-
tential deteriorates the accuracy and leads to the diffi-
culties just mentioned. The difficulty to describe
exchange in DFT has led to hybrid methods, where part
of the exchange energy is described using Hartree–Fock
(HF) theory. The most well known of these methods is
probably B3LYP, in which an empirically determined
fraction of exact exchange is introduced into the func-
tional [3]. This functional has been widely used, but does
not solve some of the basic problems with the original
formulation of DFT.

It is well known that the original formulation of DFT,
where the energy is considered to be a functional of the
density only, can easily be extended. Theories based on
the density matrix have been formulated [4]. In the well-
known works by Colle and Salvetti [5, 6], the two-particle
density is used, originally for formulation of functionals
for use with closed-shell wave functions, but later also for
more general wave functions. Savin [7] and Gräfenstein
and Cremer [8] have formulated theories which combine
DFT with a multiconfigurational description of the wave
function. We propose a formulation that leads to the
definition of a correlation potential, which becomes
universal by inclusion of such auxiliary variables as the
reference on-top two-particle density, but with no energy
minimization with respect to such variables. If an accu-
rate potential can be found, such an approach would
combine the general applicability of multiconfigurational
Self-consistent-field (SCF) theory, in particular com-
plete-active-space (CAS) SCF, with a DFT-based for-
mulation of dynamic correlation effects. One of the
bottlenecks of the CASSCF method would then be
solved. Today this approach is possible for quite large
systems and since it is not limited by the complexity of the
wave function it can be applied to all types of electronic
structure problems, excited as well as ground states.

We shall in this paper give the theoretical foundation
for a CAS DFT theory and also illustrate the form that
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the correlation potential has in a number of typical
cases, including dissociating molecules and systems with
a near-degenerate electronic structure.

2 Theoretical formulation of the CASDFT method

A CASSCF wave function [9] is an expansion in Slater
determinants, where the inactive orbitals are always
doubly occupied, and the active orbitals have varying
occupation. All possible Slater determinants that can be
formed with a certain number of active electrons are in
principle used in the expansion. (Expansion terms
known to be zero for reasons of symmetry are of course
not explicitly included in a practical calculation. Simi-
larly, the determinant basis may be precontracted into
spin eigenfunctions, to reduce the size of the expansion.)
The orbitals are varied freely.

For a normalized N -electron wave function, W, the
density function qðxÞ is defined as

qðx1Þ ¼def N
Z
� � �
Z
jWðx1; . . . ; xN Þj2dx2 � � � dxN

or qðxÞ ¼defhWjŵðxÞyŵðxÞjWi : ð1Þ
Here, x stands for a compound variable (position and
spin) as is usual for general fermionic systems,

R
dx

implies integration over space and spin summation, and
if x ¼ ðr; sÞ, then ŵðxÞ is as usual an annihilator of an
electron with spin s at position r. This mapping from W
to q is written in short as q ¼ DensðWÞ. The wave
function is assumed to be square-integrable with finite
kinetic energy, and we will assume that we have
available a complete set of orbital functions, orthonor-
mal, and each with finite kinetic energy, in a conven-
tional second quantization formalism.

The formal CASDFT theory starts by defining the
CAS reference wave function WM

q for any given q as that
CAS wave function which reproduces the required
density and at the same time has the smallest possible
CASSCF energy in that set SM of wave functions that
fulfils some restriction M . The symbol M will specify the
number of inactive orbitals, number of active orbitals,
number of electrons, and maybe additional requirements
arising from spin or point group symmetry. The density
function will always be assumed to be positive and with
integral=N , the total number of electrons. That subset
of SM , which has a specified density, i.e. DensðWÞ ¼ q
and W 2 SM , will be called SM

q . The equation for the CAS
reference function is thus

GM ½q� ¼def min
W2SM

q

hWjT̂ þ Ŵ jWi;

where T̂ ¼ 1

2

X
i

r2
i ; Ŵ ¼

X
i>j

1

rij
: ð2Þ

The orbitals and the configuration interaction (CI)
coefficients are varied freely (except that the orbitals are
orthonormal and the CI coefficient vector is normalized)
to achieve the specified density. Any one-electron
potential energy is fixed by the density function, so the
energy to be minimized is just the kinetic and the electron

repulsion energies. Since the one-electron potential does
not appear, and the density function should be variable,
there are no ‘‘physical’’ requirements, for example,
existence of nuclei and cusp conditions at their positions:
the functional definition must be valid also for unphys-
ical densities if used in variational calculations.

For strict definitions of continuity, differentials and
derivatives, some metric or at least topological properties
of the wave function space must be assumed. For atomic
and molecular problems, it is sufficient to define ‘‘close-
ness’’ in terms of for example, a locally defined Sobolev
space, so that in addition to the conventional L2

requirements, small variations also imply finite kinetic
energy. With this definition, the mapping from wave
function to energy is continuous and differentiable
everywhere, and the wave function space has no bound-
aries. It is not closed in the direction towards high kinetic
energy; however, the variation can always be limited to
within a closed subset around any given wave function.

For the wave function that achieves minimization, we
then have

hdWjT̂ þ Ŵ jWM
q i ¼ 0 for any dW 2 SM

such that hdWjŵðxÞyŵðxÞWM
q i ¼ 0 : ð3Þ

This implies that for any arbitrary variation within SM

hdWjT̂ þ Ŵ jWM
q i ¼hdWj

Z
kM

q ðxÞŵðxÞ
yŵðxÞdxWM

q i

¼hdWj � V̂ WM
q i : ð4Þ

Here, the unknown function kM
q ðxÞ represents a linear

functional, and may possibly be a generalized function.
If such is accepted, kM

q ðxÞ is seen to act as a potential
function, as anticipated. Unless the minimizing wave
function is itself a differentiable function of the density,
kM

q ðxÞ is not necessarily a functional derivative of the
energy with respect to density, but we will return to that
matter shortly.

Writing this in second quantization form, and intro-
ducing the complete set of orbital basis functions
/pðxÞ; p 2 ½0 . . .1�, and Slater determinants (or spin-
coupled configuration functions) Ul constructed by
populating the inactive and active orbitals, the usual
CASSCF equations are obtained:

hUljT̂ þ Ŵ þ V̂ jWM
q i ¼ 0; 8l

hWM
q j ðT̂ þ Ŵ þ V̂ ; X̂pq
� �

jWM
q i ¼ 0; 8p; q;

where

X̂pq ¼def âypâq � âyqâp

and

âp ¼def
Z

ŵðxÞ/pðxÞdx:

Thus,

GM ½q� ¼ hWM
q jT̂ þ Ŵ jWM

q i : ð5Þ

Unlike the usual equations, the one-electron potential
is not known initially, but is determined by the
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requirements that WM
q is the eigenfunction with lowest

eigenvalue (which is shifted to 0) and at the same time
DensðWM

q Þ ¼ q. To sum up, the definition of a unique
wave function in SM

q as that which minimizes the sum of
the kinetic and electron repulsion energies leads to a
CASSCF equation with an unknown one-electron
potential, which is to be determined. Obviously, the
potential can be determined only to within an arbitrary
shift in the energy level (since hdWjWi=0 for all
acceptable variations). We remove this arbitrariness by
requiring that the expectation value of the potential is
equal to GM ½q�. (In fact, this was implied in the last sets
of equations; the more general solution is obtained if the
right-hand side of the CI-like equations is changed from
0 to EhUljWi, where E is some arbitrary energy shift.)

If a unique solution exists, and if there is no degen-
eracy problem, then GM ½q� is differentiable by standard
perturbation theory, andZ

kM
q ðxÞqðxÞdx ¼ GM ½q� ;

dGM ½q�
dq

ðxÞ ¼ kM
q ðxÞ :

ð6Þ

However, when do solutions exist and are they unique?
For our definition to work, it is necessary and suffi-

cient that there are indeed some wave functions W 2 SM
q ,

and that for at least some of these hWjT̂ þ Ŵ jWi <1.
There are some complications if symmetry or spin
restrictions are used, but if not, then it is simple to prove
that SM

q is not empty by reference to known results for
the HF and the Hohenberg-Kohn cases.

These two limiting cases are included: that of a HF
reference function (M ¼ HF), and the exact wave
function (M ¼ Exact; the Hohenberg–Kohn case). The
HF case differs from the Kohn–Sham case in the
definition of the reference, but not in a way that
affects our reasoning here. In the HF and Kohn–Sham
cases, it is well known that if q is non, negative and
integrates properly to N , there are wave functions
W 2 SHF for which DensðWÞ ¼ q. But then there are
such wave functions also for more correlated CASSCF
cases, since SHF

q � SM
q � SExact

q . The question of so-
called wave function representability is thus trivial for
CASDFT.

For minimization, it is furthermore necessary that at
least some wave functions in SM have a finite energy
expectation value. One criterion that is sufficient isZ
jrqðxÞj2=qdx <1 : ð7Þ

The minimization then also ensures GExact � GM � GHF.
Except in very special circumstances, the inequalities are
in fact strict. This way of defining a functional such as
GExact may have been implied in the works of Hohen-
berg, Kohn, Sham and others, but was explicitly used by
Levy and is called Levy’s restricted minimization
approach [10].

In our case, just as for conventional DFT, both the
previous requirements are always fulfilled in practice.
The density function is manifestly ‘‘V -representable’’ in
the limited sense that the density arises from a CASSCF

trial wave function with a one-particle potential function
in an inner loop of the calculation.

However, a stronger ‘‘V -representability’’ is defined
as the existence of a functional derivative of GM ½q� with
respect to variations in q. In the M ¼Exact case, it was
shown by Hohenberg and Kohn that if a solution exists
at all, then it is unique. Thus the requirement of finite
energy is enough to ensure strong V -representability in
this case. In the general CASDFT case, however, there
may be density functions where WM

q is a discontinuous
function of q, and GM ½q� is not differentiable. In fact,
similar phenomena occur already for CASSCF (includ-
ing HF) – without any added correlation potential – but
this is rarely seen as any problem. This either makes it
difficult for the CASDFT iterations to converge, or
convergence to different solutions may occur depending
on the iteration history. In any case, this possibility
shows up as near-degeneracy problems in the inner-loop
calculations, and signals a need for a different active
space. With a suitable active space, where this does not
happen, standard perturbation theory shows that, at
least locally, GM ½q� is differentiable. We will, for the rest
of this article, assume that the method is applied using
appropriate active spaces.

In the CASDFT method, we use a ‘‘pure correlation’’
energy and potential, rather than a so-called exchange–
correlation potential. Presently, most calculations are
done by the Kohn–Sham method, where the reference
wave function is a single determinant wave function, just
as in the HF case. However, it is defined by minimizing
the kinetic energy only, and an exchange–correlation
energy is defined by subtracting the kinetic energy and
the coulomb energy of the Kohn–Sham reference. The
orbitals differ from those of the HF reference, but also
the determinant functions themselves differ: the HF and
the Kohn–Sham orbitals are not related by a simple
unitary transformation matrix, as has occasionally been
assumed. In practice, it is the exchange–correlation en-
ergy that is approximated by efficient formulae, and the
calculation is performed by modifying a conventional
HF program by replacing the exchange contribution to
the Fock matrix with a corresponding one-particle
contribution, obtained by calculating matrix elements of
the functional derivative dExc½q�=dq over the one-elec-
tron basis set. It is also quite possible to keep the con-
ventional HF exchange energy, and use an
approximation to the correlation energy only. Some of
the most successful present schemes keep a certain
fraction of the HF exchange, and use a functional for the
rest.

We now define correlation energy and correlation
potentials for the family of CASSCF wave functions:

EM
c ½q� ¼ GExact½q� � GM ½q� ;

vM
c ½q�ðxÞ ¼

dEM
c ½q�
dq

ðxÞ ¼ kExactq ðxÞ � kM
q ðxÞ ; ð8Þ

where the second line is a functional derivative. The
ground state density for any ‘‘physical’’ problem, which
we take here to be any Schrödinger equation with a
specified one-electron potential vextðxÞ in addition to the
interelectronic repulsion energy, i.e., a Hamiltonian
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Ĥ ¼ T̂ þ Ŵ þ V̂ ext ; ð9Þ
can be obtained as the density which minimizes the total
energy

E ¼ min
q

Z
vextðxÞqðxÞdxþ GExact½q�

� �

or

dGExact½q�
dq

ðxÞ ¼ �vextðxÞ : ð10Þ

(The functional derivative exists: q is varied within the
set of V-representable functions, as discussed before.)
Substituting the expressions for GM and the correlation
energy EM

c ½q� gives

E ¼ min
q

Z
vextðxÞqðxÞdxþ GM ½q� þ EM

c ½q�
� �

; ð11Þ

E ¼ min
W2SM

hWjĤ jWi þ EM
c ½DensðWÞ�

� �
: ð12Þ

The corresponding CASSCF equations become finally

hUljĤ þ EM
c ½DensðWM

q Þ� � EjWM
q i ¼ 0; 8l

hWM
q j ðĤ þ V̂ M

c ½DensðWM
q Þ�; X̂pq

h i
jWM

q i ¼ 0; 8p; q ; ð13Þ

which are seen to be fulfilled if the iterative procedure
below has converged.

(Begin with V ¼ one-electron potential, Vc ¼ 0)

Loop over iteration counts

Find the ground state wave function using

the one-electron potential V þ Vc

Compute its density function, q

Compute a new correlation potential, V 0c
If V 0c � Vc then

Break loop; Calculation is converged.

Else

Let Vc  V 0c and continue looping.

End If

End Loop

There are cases of density functions that are not V -
representable in this form, for some particular small
active space, but only ensemble-V representable. From
the previous iterative procedure, we see that if such a
density represented the true ground state, then the
procedure would fail to compute this state, but would
instead give some more or less distorted state with
lower symmetry. Similarly, there are many cases where
the true ground-state density function is representable
without problem (such as the HF wave function for
N2) but where a proper description requires ensemble
representability (the separate N atoms during dissoci-
ation). In the CASDFT method, both such cases of
unsuitable active space should be regarded as failing
to specify a suitable active space, rather than as a

failure of the method resulting from a fundamental
problem. Naturally, fitting and testing of any param-
eterized approximate functional should include cases
where correct dissociation of the CASSCF representa-
tive results in so-called tangled wave functions, i.e., the
fragments are strongly correlated with each other at
long distance, and each individual fragment if consid-
ered alone is in a mixed quantum state not describable
by a wave function. Conversely, if one wishes to
investigate a mixed state, it can always be obtained as
the local part of a wave function with a few additional
electrons and diffuse orbitals positioned very far away.
This means that the distinction between wave function
and ensemble representability disappears.

2.1 Some practical considerations

From the beginning, we have described the correlation
energy and the correlation potential as being functionals
of the electronic density function q. One may assume
that other variables, such as orbital energies, may also be
used to our advantage: the more variables, the more
accurate the formula. This is indeed true, but has to be
done with caution. We wish in the end to use simply an
added one-electron correlation potential. This implies
that during the variational calculation, the added
quantity must be the functional derivative with respect
to the density and nothing else. On the other hand, it
may well depend on the density function in a compli-
cated and non, local way. We conclude that in addition
to the density function itself, we may augment the
variable space with quantities such as the gradient of the
density and the kinetic energy density, the two-particle
density. However

– Any additional quantity is regarded as a functional of
the CASSCF reference state, which in turn is regarded
as a functional of the density. At convergence, the
density is exact, i.e., identical to that of an exact
solution to the Schrödinger equation. Auxiliary quan-
tities are not.

– During energy minimization, such additional quanti-
ties cannot be varied as if they were additional
independent variables.

– It must be independent of the orbitals, since CASSCF
orbitals are determined only within arbitrary unitary
transformations among inactive and among active
orbitals. There is no ‘‘canonical’’ choice of orbitals.

– It must be either a local quantity, or at least local
enough to ensure strong extensivity: an isolated
subsystem has the same properties irrespective of the
presence or absence of other, infinitely distant sub-
systems.

In DFT, the correlation (or exchange–correlation)
potential is not parameterized, except possibly for
extended systems (perturbed electron gas). Instead, a
related quantity, called the correlation energy density
ecðxÞ [or excðxÞ] is used. It is parameterized in terms of
local values of density, etc., and is related to the
correlation energy and the correlation potential by
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ecðxÞ ¼ F ½qðxÞ;rqðxÞ; . . .�;

Ec ¼
Z

qðxÞecðxÞdx;

vcðxÞ ¼
dEc

dq
: ð14Þ

It is in general much easier to find a reasonable
expression for ec than for the correlation potential. This
is partly because e, if regarded as a functional of the
density, is not unique, and it is easier within the infinite
set of energy density expressions to find one that can in
fact be approximated with local quantities, as done
earlier with an assumed expression F ½qðxÞ;rqðxÞ; . . .�.

On the other hand, one must then be able to form
matrix elements over the one-electron basis of the
functional derivative dEc=dq. This is easy with rqðxÞ as
an auxiliary variable, but not easy at all with some other
quantities.

Here, we are going to use extra auxiliary variables,
computed at a large number of points for numerical
integration. It is difficult to find useful expressions for
the functional derivative, so we shall instead attempt to
fit the correlation potential directly. For this purpose, we
have started to compile a data base containing values of
accurately computed correlation potentials, together
with the values of density, gradient of density, and
auxiliary variables, all computed in the same point.
Should a direct fit fail, the data base can still be used to
test correlation energy density formulations. It will be
illustrated late.

2.2 The universality of the functional
and the double-counting problem

The Hohenberg–Kohn functional GExact is often called
‘‘universal’’. This refers to the fact that it is truly in the
mathematical sense a functional of the density function:
it depends on nothing else than the density function, and
it is applicable for all kinds of densities (not just those
with cusps, and not just for unperturbed molecular
systems), so it has the necessary variational properties.

This is true also for each one of the functionals GM , but
they are all different, and it would be bothersome to make
separate fits for them all. This is sometimes called the
double-counting problem. Some of the dynamic correla-
tion is already included in the CASSCF wave function,
even if its purpose is mainly to allow proper treatment of
bond breaking and other open-shell problems [11, 12].
Alreadywith small active spaces, the correlation energy of
the Colle–Salvetti functional can be much overestimated
(R. Lindh, Private Communication). (This is obvious for
extremely large active spaces, where all the correlation
energy is accounted for already by the CASSCF, but that
is hardly relevant for practical calculations.)

However, consider the whole family of CASSCF
calculations, i.e., all the different GM ½q� for one partic-
ular density function q, but different M . One cannot
expect that any two such calculations would end up with
the same on-top two-particle density PðrÞ [13], which is
computed as

P ðrÞ ¼def
X
rr0

Z
jW½ðr; rÞ; ðr; r0Þ; x3; _s; xN �j2dx3 � � � dxN ;

ð15Þ
and has been frequently suggested as a useful local
auxiliary variable.

If they are in fact different, then in a very formal sense
we can replace all GM with one single functional in two
variables:

G½q; P M � ¼def GM ½q�; 8q and M ; ð16Þ
where P M is the on-top two-particle density function
computed from the CASSCF wave function M . The
same is true, although to a lesser extent, for the kinetic
energy density s, which is conveniently computed from a
density matrix:

sðrÞ ¼def
X

pq

Dpq r/pðrÞ
� �

r/qðrÞ
� ��

: ð17Þ

Use of P as an additional variable has also been
suggested by Savin [7] and by Gräfenstein and Cremer
[8], in both cases with functionals for energy density
rather than for the correlation potential. Such use does
not seem to be consistent with energy minimization,
however. If P is used as an additional variable this leads
to severe representability problems. Its use would also
lead to paradoxical results with increasing active space.
The functional derivative with respect to P corresponds
to the addition of a contact potential to the electron–
electron interaction. Such a modification is well known
to not affect the wave function at all, except at
infinitesimal interelectron distance, where the function
discontinuously changes to take whatever value is
required to separately minimize the correlation energy –
independent of the rest of the wave function, which will
be identical to the wave function without correlation
functional. Of course, this description applies only to the
limit of CASDFT calculations with very large active
space, and in the limit, the correlation energy and its
functional derivative should vanish anyway.

By contrast, we propose the use of a parameterized
form of the correlation potential as a functional of
auxiliary parameters, and believe that the use of PðrÞ and
sðrÞ as auxiliary parameters allows us to formulate a
universal functional. In practice we shall not use P ðrÞ,
but the more sensitive ‘‘relative activity index’’ defined as

aðrÞ ¼ 1� 2P ðrÞ
qðrÞ2

: ð18Þ

aðrÞ is exactly zero in the closed-shell HF case and is
therefore a sensitive measure of the deviation of the
wave function from a closed shell. Thus aðrÞ will be
crucial, not only for CAS wave functions in general but
also for open-shell SCF trial functions. As already
indicated in the schematic program, the correlation
potential is computed at each iteration, and wave
function parameters are then adjusted for a CASSCF
calculation with this potential added. This bypasses all
problems with representability of the extended domain,
consisting of variation in both q and auxiliary vari-
ables.
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3 The correlation potential

In this section we shall study the shape of the correlation
potential vcðrÞ in a number of illustrative cases. As
described previously the correlation potential is identi-
fied as a function upon addition of which to the one-
electron CASSCF Hamiltonian the CASSCF calculation
gives the exact density distribution function. vcðrÞ is then
defined up to a constant C, which is chosen to the get the
exact energy Eexact. Such a definition of vc generalizes the
HF-DFT approach, and gives results close to the limit of
an added correlation correction in the HF Kahn–Sham
cases [14]. Furthermore, this method makes it, in
principle, possible to avoid double counting of dynamic
correlation effects in the CASSCF case.

The properties of the correlation potential can be
studied in cases where the density function can be
accurately computed using wave-function-based meth-
ods. Such calculations have a long history, but almost all
have been for the Kohn–Sham exchange–correlation
potential. However, Ivanov et al. [15] and Filippi and
Umrigar [16] have calculated correlation potentials for
two-electron model systems.

We are presently computing CASDFT correlation
potentials for a variety of systems including closed shells,
dissociating molecules, and open shells. This work is the
first step in solving the more interesting problem of
building up a universal correlation potential based on the
molecular parameters described in the preceding section.

The calculation scheme is as follows.A trial correlation
potential, vcðrÞ, is constructed as an expansion in a basis
set of Gaussian functions (GF) with different angular
momenta with the same symmetry as the system under
consideration:

vcðrÞ ¼ C þ
X

a

CavaðrÞ ; ð19Þ

where vaðrÞ are s, p, d, . . . GFs and Ca are the expansion
coefficients. Let q~vc be a CASSCF optimized density
function corresponding to the correlation potential ~vc.
We will try to find ~vc such that it minimizes the set of the
following values:

f~Ra � Rag ; ð20Þ
where ~Ra ¼ Wð~vcÞjvajWð~vcÞh i and Ra ¼ WexactjvajWexacth i.

The constant C is chosen such that
C ¼ ð1=NÞðEexact � EvcÞ. If we have a large enough basis
set fvaðrÞg then q~vcðrÞ ! qexactðrÞ and Evc ¼ Eexact.

In order to find the correlation potential we use an
ordinary quasi-Newton procedure with a Hessian cal-
culated numerically as

For a reasonable basis of va, this matrix is positive-
definite and nearly symmetric. After additional symme-
trization the inverse matrix G

sym
ab is used to obtain the

next correction Cðiþ1Þa in an iterative procedure:

Cðiþ1Þa ¼ CðiÞa þ
X
ab

ðGsym
ab Þ

�1rb ; ð22Þ

where rb ¼ ~Rb � Rb. After convergence is reached
this method yields the correlation potential vc that
corresponds to the initial (input) density function qðrÞ.
Thus, the accuracy in qðrÞ determines the final precision
of vc.

We have used this procedure to compute the corre-
lation potential in a number of illustrative cases. The
calculations were performed with a development ver-
sion of the MOLCAS package [17], using the uncon-
tracted Gaussian of the ANO-L basis sets of the
MOLCAS basis set library. For the calculation of the
‘‘exact’’ electron density we used the multireferene
(MR)CI-averaged copied pair functions (ACPF) pro-
gram in MOLCAS with extended basis sets. For the
optimization of the CASSCF wave functions, the
standard restneted–active–space (SCF) program was
used, with addition of the correlation potential matrix
elements to the one-electron Hamiltonian. In all cases a
number of properties were generated over a dense grid,
which will later be used for the construction of a uni-
versal potential. The basis functions va for the potential
were chosen as precontracted sets of Gaussian-type
orbital (GTO) basis functions for near and far regions
from the nucleus to provide not less than 0.5% accu-
racy in the density. The details are given later.

3.1 Correlation potentials in the HF-SCF case

In order to compare this method with other approaches
reported in the literature, we present first some calcula-
tions of the correlation potential for the HF case. Other
such studies can be found, for example, in Refs. [14, 18,
19, 20].

Our first and simplest example is the calculation of
the correlation potential for the isoelectronic series
of the He atom (Fig. 1). For these two-electron systems,
the different definitions of the correlation potentials are
in close agreement with each other. This is because for
these systems the expression for the exchange part of the
exchange–correlation energy functional is known and
there exist practically exact solutions for the two-particle
Schrödinger equation [20].

An accurate density was first computed using MR
single and double extension (SD)CI with a primitive
basis set of the size 14s9p6d4 with exponents taken from
the ANO-L basis set. The correlation potential was ad-
ded to the HF Hamiltonian and was adjusted (using the
procedure described earlier) such that the resulting
density agrees with the exact one.

The curves reported in Fig. 1 are in good agreement
with the results of Ref. [20]. They have qualitatively
similar behavior for all members of the He iso-electronic
series, negative at short distances and positive at

Gab ¼ lim
D!0

Wðvc þ DvaÞjvbjWðvc þ DvaÞ
� �

� Wðvc � DvaÞjvbjWðvc � DvaÞ
� �

2D
ð21Þ
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intermediate distances, decreasing to zero at long dis-
tance from the nucleus. As expected, the maximum of the
correlation potential is shifted to smaller r with increased
nuclear charge, Z. This can be explained by a redistri-
bution of electronic density with increase of Z towards
the centre of the nucleus. In order to make the plot
clearer, it has therefore been made in a scaled coordinate.

The next illustration is the correlation potential vc for
a more complicated system, the F2 molecule, again
computed with a HF reference function. An uncon-
tracted basis set 14s9p4d3f was used and the exact
density was computed using the MRCI-ACPF method.

Various projections of the correlation potential are
plotted in Fig. 2, both parallel and perpendicular to the
molecular axis. In the same figure we plot also the dif-
ference between the exact electronic density and the

density corresponding to aSCF wave function (the latter
does not include any correlation potential). From this
density difference one can see that the correlated func-
tion vc reflects this difference in the electron density. The
oscillatory structure of the correlation potential com-
pensates for the electron density fluctuations [14].

An interesting feature of the correlation potential for
the F2 molecule is the maximum at the bond midpoint,
which has been explained as the effect of Pauli repulsion
between the closed shells [21, 22]. Apart from this we
notice that the potential plotted perpendicular to the
bond axis shows the radial correlation effects in the lone
pairs (Fig. 2b), an effect that has almost disappeared at
the bond midpoint (Fig. 2d).

3.2 CAS correlation potentials for Ne, N2, and F2

Here we shall study the correlation potential when we
instead use a CASSCF reference function. The atom Ne
and the molecules N2 and F2 been chosen as examples.
For Ne we used an active space including the valence
shell electrons and the orbitals 2s, 2p, 3s, 3p. Thus, the
most important radial correlation effects are included in
the reference function. The exact density was obtained
from MRCI-ACPF calculations using an uncontracted
14s9p6d4f basis set.

The resulting correlation potential is presented in
Fig. 3, where it is compared with the corresponding
potential obtained with a HFtrial function. The dif-
ference between the two potentials is typical and we
shall see similar differences in other cases. The CAS
potential has the same nodal structure as the HF-based
potential, but the opposite sign. It is well known that
CASSCF has a tendency to overestimate correlation
effects of a given type when small active spaces are
used. In this case the radial correlation has been
overestimated and the correlation potential counter-
balances this effect. We notice, however, that the CAS

Fig. 2. Projections of the corre-
lation potential for the F2 mol-
ecule in the case of a Hartree–
Fork (HF) reference function:
a along the molecular axis,
b perpendicular to the molecular
axis through one of the atoms,
and d perpendicular to the
molecular axis through the bond
midpoint. c shows the difference
between the exact density and
the fitted density along the
molecular axis (here put below a)
to show how the density differ-
ence determines the correlation
potential)

Fig. 1. The correlation potential for the He isoelectronic series as a
function of the scaled parameter Zr (au). He (solid line), Liþ (long
dashed line), Be2þ (dot-dashed line), B3þ (dashed line)
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potential is considerably much smaller than the HF
potential, indicating that a large fraction of the corre-
lation effects has been included in the CAS calculation.
One should also keep in mind that we plot vc without
the constant C, which is used to shift the total corre-
lation energy to the exact value.

The same features are found for the N2 molecule.
Here, the CAS active space includes the eight valence
orbitals with ten active electrons. The basis set was a
14s9p4d3f primitive set. The calculations were per-
formed at the equilibrium geometry of the molecule. The
correlation potential is shown in Fig. 3 and compared
with the HF-based potential. We see the same features as
for Ne, a change in sign and a reduction in size. The
reduction in size is most prominent in the bond mid-
point. This is of course due to the inclusion of left–right
correlation in the CAS wave function.

We finally consider the F2 molecule at its equilibrium
distance. The computations were performed as for N2

and for the same type of basis set. The resulting corre-
lation potential is presented in Fig. 4, where it is com-
pared with the SCF-based potential discussed earlier.
The potential is plotted here along the molecular axis.
We notice again the change of sign in going from SCF to
CASSCF. The peak at the bond midpoint is still present,
which is natural because the active space does not in-
clude any radial correlation effects for the lone-pair

electrons. The relation is, however, not true pointwise
because it is not necessarily local. What is seen is a
‘‘fairly’’ local dependence though.

The differences between the exact density and the
SCF (dashed line) and CASSCF (solid line) densities are
shown in Fig. 5. This now gives an additional explana-
tion of the sign change of the correlation potential. The
CASSCF density is closer to the exact density but
overcompensates, which leads to a sign change in the
density difference. The correlation potential is approxi-
mately a function of this density difference ðq� qexactÞ,
where ðqÞ is the reference density. This indicates an
approximately local relation, where of course vc goes to
zero with the density difference, and seems to remain
valid also for larger deviations.

3.3 Dissociation of H2 and N2

The closed-shell HF approach will always break down
when we study a dissociation process where the frag-
ments are open-shell systems. The system will become
more and more degenerate when the bond length
increases and will become completely degenerate at the
dissociation limit. A multiconfigurational approach is

Fig. 4. SCF (solid line) and CAS (dashed line) correlation potentials
for the F2 molecule along the bond axis

Fig. 5. The difference between the exact electron density and the
SCF density (dashed line) or CAS density (solid line) along the bond
axis for the F2 molecule

Fig. 3. The correlation potential
for the Ne atom (to the left) and
for the N2 molecule along the
bond axis. With a self-consistent-
field (SCF) trial function (solid
lines) and with a complete-
active-space (CAS) function
(dashed line)
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compulsory for the treatment of such energy surfaces.
Here we shall illustrate the breakdown of the correlation
potential in the SCF case and the smooth behaviour of
the corresponding CAS potential for two systems, the
H2 and N2 molecules.

The calculations on H2 were performed with an un-
contracted 8s4p3d basis set. The exact density was ob-
tained using the MR-SDCI method and the active space
used for the CASSCF calculations was the hydrogen 1s
orbitals. The results are shown in Fig. 6, which gives the
SCF and CAS vc for four different bond distances: 1.42,
2.00, 3.00, and 6.00 au. These potentials have the same
general features as we have seen before, but in addition
we see how the SCF potential increases in size and be-
comes unphysical at large distances. The CAS potential,
on the other hand, retains its general form and goes to
zero (as expected) at the dissociation limit. The present
SCF correlation potential is in agreement with the earlier
work by Buijse et al [19].

A more complicated situation arises for the process of
dissociating the triple bond in the nitrogen molecule. In
Fig. 7 we show the SCF and CAS potentials for three
different internuclear distances in N2, 1.044, 2.00, and
3.00 au (only half of the potential along the molecular
axis is shown). The calculations were performed as
previously described with all valence orbitals active (ten
active electrons). Again we see the mirror imaging effect
when going from SCF to a CAS trial function. While the
SCF potential increases in size with increasing distance,
the CAS potential smoothly goes to the added potentials
for two noninteracting nitrogen atoms.

3.4 The fluorine atom as an illustration
of an open-shell case

As a final example we show the correlation potential
for the fluorine atom. In this case an open-shell
restricted HF calculation gives the trial function and

the exact density is obtained from MRCI-ACPF
calculations using the primitive basis set 14s9p4d3f.
The result is shown in Fig. 8. The correlation potential
will not be spherically symmetric. Instead we see larger
values perpendicular to the direction of the odd
electron (solid line) in the direction of the doubly
occupied 2p orbitals.

4 Future work

The results of this report, plus additional studies not
reported here, constitute a data base which will be used in
a search for a universal functional form of the correlation
potential. This database includes the fitted correlation
potentials together with a number of auxiliary quantities
which may be used to construct the functional. The most
important of these are

½qðrÞ;rqðrÞ; sxðrÞ; aðrÞ� ; ð23Þ
where sxðrÞ ¼ sðrÞ � 1

8 jrqðrÞj2=qðrÞ is the excess kinetic
energy. The ‘‘relative activity function’’ aðrÞ ¼ 1� 2P
ðrÞ=qðrÞ2 includes the on-top two-particle density P ðrÞ and
will be crucial for avoiding the double-counting problem
in the CASSCF case. Previous work has shown the
importance of including the kinetic energy in the con-
struction of accurateGeneralized gradient approximation
functionals (including exchange) [23, 24].

The on-top two-particle density has been used in
earlier attempts to construct a correlation functional in
the multiconfigurational case [8, 25]. Here we have de-
fined the activity function, which by construction van-
ishes in the closed-shell HF case.

Thus, the general functional form of vc is

vc ¼ F ½qðrÞ; jrqðrÞj; sxðrÞ; aðrÞ� : ð24Þ
In the search for F we can make use of the following
limiting cases:

Fig. 6a–d. Correlation potentials along the
bond axis for the H2 molecule: SCF (solid
line), CAS (dashed line). For the bond
distances a 1.42, b 2.00, c 3.00, and d 6.00 au
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– For the two-electron He-like series, sxðrÞ and aðrÞ are
zero for a HF reference function and we obtain the
form F ½qðrÞ; jrqðrÞj; 0; 0�.

– For the uniform electron gas we have F ½qðrÞ; 0; sxðrÞ; 0�
– Various other closed-shell systems give us additional

information where only aðrÞ is zero in the case of SCF
calculations.

– Finally, the activity function is introduced when we
include cases with a multiconfigurational reference, or
open shells.

With the information at hand it becomes possible to test
and extend existing functional forms of the correlation
potential and possibly to construct new forms which
fulfil the conditions just given. We shall report the results
of these efforts in a forthcoming article.

5 Conclusions

We have in this report shown that a universal functional
of the electron density can be formulated for the
correlation potential with a multiconfigurational trial
function. We have shown that this universality is a
consequence if we include as an auxiliary quantity in
addition to the electron density (and possibly its
gradients) the relative activity index a, which describes
the deviation of the on-top two-particle density from the
closed-shell HF case.

In addition we have constructed the correlation po-
tential for a number of illustrative atomic and molecular
cases and shown how its properties change when we
move from a HF to a CAS reference function. These
calculations constitute part of a larger data base which
will now be used to find a functional form for the cor-
relation potential.
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